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AB~~RA~~
Multistate Coherent Systci~s.

Th- vast ~3aJority of reliability analyses assume that components and system

~e in either of two states : functioning or failed . The present paper develup~
asic theory for the study of systems of components in which any of a finite

.~‘rb~~ of states may occur , represc~nting at ~ne extreme perfect functioning anã

the other extreme complete failure . We lay down axioms extending the stenda~

~‘tion of a coherent system to the new notion of a !nultistate coherent system.

~~‘;~~ such systems we obtain deterministic and probabilistic properties for ~y~te~
r.~ormance which are analogous to well known results for coherent system

~~liability .
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Moltistate Coherent Systems.

1. Introduction and Sa~~ ary.

A central problem in reliability theory is to determine the relationship

between the reliability of a complex system and the reliabilities of its com-

ponents. Thus far , in practically all treatments of this problem, the system

and its components are considered to be in either of two states: functioning

(denoted by 1) and failed (denoted by 0). The theory of binary coherent struc-

tures has served as a unifying foundation for a mathematical and statistical

theory of reliability for this dichotomous case. In fact, fairly complete

solutions of various aspects of this problem have been obtained by Birnbaua

Esary , Saunders , Marshall , Barlow , and Proschan. See, for example, [1) , (3) ,

[41, (5] , (6] , and (7] .

In many real life situations, however, the systems and their components

arc capable of assuming a whole range of levels of performance , varying from

perfect functioning (denoted by level N, say) to complete failure (denoted by

0). In these situations, the dichotomous model is an oversimplification of the

actual situation , and so models representing ~ altistate systems and *iltistate

components are ich more useful in describing the performance of these systems

in terms of the p.rformsnce of their components.

Unfortunately , very little work has been done on this more general problem

of moltistat. systems. Among th. earlier papers treating aspects of Riltistate

systems rae [9), [9], (10), [11), [13), and [14]. With the exception of 110),

and (11), these papers deal mainly with models for cannibalisation , and barely

touch on the performanc, of systems and components assuming more than two states. ~ . :s

More r.c.nt and more sophisticated work on ~.iltistate systems has been performed ~~
by kn ow (2] and Ross [121; however, their models are aor specialized than ours,

ss w. shsll s...

_ _ _ _ _ _ _ _ _ _ _ _ _‘
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The main purpose of the present paper is to develop an adequate general model

and theory for the case in which both systems and components may assume any of an

orOi’ed set of states, say 0, 1, 2 , ... , H; this theory generalizes coherent

structure theory. We develop the concept of a multistate coherent structure as

a generalization of the well known binary coherent structure. ~e then use this con-

cept as a unifying foundation for the study of the relationship between the per-

formance of a system and the performance of the components in the system. In

forthcoming papers , we shall present treatments of various stochast ic aspects

of multistate systems with the aim of ultimately achieving a comprehensive theory

analogous to coherent structure theory in the binary case (see [1)).

We now summarize the contents of this paper. Our formulation and treatment

are similar to that of Barlow and Proschan [1) for the two state case. In

Section 2 we present the notation and terminology used throughout the paper.

In Section 3 we consider a system of n components. For each component and for

the system itself , we can distinguish among say M • 1 states representing suc-

cessive levels of performance ranging from perfect functioning (level H) down to

complete failure (level 0). For component i~ denotes the corresponding state

or performance level , i • 1, 2 , .. ., n; the vector z u  (x1, ... , x,~) denotes the

vector of states of components 1, •.., ii. We assume that the state • of the

system is a deterministic function of the states x1, •
~~~

•
~~ 

X~ of the components.

Thus • a •(~), where z takes valu•s inS
”,S a ( 0 , 1, ... , M}, and • takes values

in S. We d•fin• a multistate coherent structure as a natural generalization of

the standard concept of a binary coherent structure by requiring three reasonable

conditions that • must satisfy .

We then obtain deterministic relationships between the performance of a

system and the p.rformsnc. of its components; these relationships are natural

1izations ofw.l1T in the bj

~~~~

case Thu, we show tha he
’
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p.

performance of a multistate coherent system is bounded below by the performance

of a series system and bounded above by the performance of a parallel system.

We next present a decomposition identity useful in deriving inductive proofs and

probabilistic properties for systems. Finally, we generalize the practical

result that redundancy at the component level is better than redundancy at the

system level.

In Section 4 we investigate the probabilistic aspects of multistate coherent

systems. We relate in a probabilistic sense the performance of the system to the

performance of its components, assumed statistically independent . Next the

decomposition identity of Section 3 is used to obtain a corresponding decompo-

sition identity for the performance function of the system. This decomposition

identity is then used to show that system performance is a monotone increasing

function of component performances . W~ er~d the section by obtaining bounds on
system performance.

Finally, in Section 5 we study some dynamic aspects of multistate coherent

systems. In earlier sections , we tacitly assume that time is fixed . In Section

5 we consider multistate coherent systems as operating over t ime . At time 0

the system and each of its components are in stat e N(corresponding to perfect

fUnctioning) . As ties passes, the performance level of components (and cons.-

qu.ntly of the system) det eriorates to lower levels until finally level 0 (cam-

piste failure) is reach.d. We define the concepts of 1PM and NW stochastic

proc.sus introduced by Ross [12] . We present a different definition for an

NW stochastic proc.ss , and prov , th . analogue of ths HILl closure theorem using

a new characterization of the HILl property.

- ~~~~~~~.. ‘~~~~:E~~~~~~~~~~ - . .  - _ _ _ _ _ _ _
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2. Notation and Terminology.

The vector x (x1, ... , x~) denotes the vector of states of components

1, ..•, n.

S • (0, 1, ... , NJ denotes the set of possible states of both components

and systems.

C • (1, 2 , ... , n} denotes the set of component indices.

(J
~

, !) (x1, ... , X~ _ 1,  L x~~1~ ..., x,~), where J • 0, 1, ..., P4 .

(.
~~, ~

) (x1, .... X j 1~ , X 1~ l, ..., xe).

1. (i~ 1, ...,
x means y~ s x~ for i • 1, ..., n , and y~ c for some i.

x V y denotes max(x , y).

x V ~~~ (x~ V y 1, ..., x~ v y ~).

x A y denotes min(z , y).

X A (X 1 
A y1, ~~~ 

A ye).

“increasing” is used in place of “nondecreasing”, and “decreasing’ is used in

place of “nonincrsasing”.

When we say f(x1, ~~~~ 
Zn) is increasing we mean f is increasing in each

arg~~ent .

Given a univariate distribution F , its complement 1-F is denoted by P.

- ~Y _ _ _
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3. Deterministic Properties of P¾~ltistat e Coherent Systems.

Consider a system of n components. We assume that for both the system and

its cor-’~nents we can distinguish among a finite number of distinct states rep-

resenting various levels of performance, ranging from perfect functioning (state

P4) to complete failure (state 0). As time passes a component , starting in state

N , deteriorates and enters state P4- 1, deteriorates further entering state M-2,

etc., until ultim~ttely it descends to State 0; a similar succession of decreasing

state levels describes the system progression over time. (In a later paper, we

consider the case of a continuous range of performance levels varying over the

interval [0, 1].)

The performance Xi 
of camponont i assunos a va1u~ in the set S — (0 , 1, ... , M}.

Pie assume that the performance of the system depends deterministically on the

performance of each of the components. Thus the state of the system is determined

‘y a function •: S~ • S. Given x , the vector of component states , we m ay deter-

mine •(&, the system state. The function $ is called the structure function of

the system.

The structure function • satisfies certain conditions that represent intui-

tively reasonable properties of systems encountered in ~~actice. In the binary

case the following two condi t~ons are required for a system to be a coherent

structure ([1], Def. 2. 1, p. 6):

(i). The function •Q~) is increasing .

(ii) . Each component is relevant to the system; i.e., for each i there

exists a vector (.
~~, ~ ) 

such that •~
1i~ ~

) > •(O~, 
~~~

. This means that the
thfunction $ is not constant in the i arguasnt, i • 1, ... , n.

Condition (i) embodies the reasonable assumption that improving the per-

forniance of componsn~ is not harmful to systela perfor mance. Condition (ii)

eliminates from consideration components which have no effect on system performance.

_ 
_ _  

——
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In our present multistate model, we stipulate three conditions:

Definition 3.1. A system of n component s is said to be a multistate coherent

system (NCS) if its structure function • satisfies:
(i) ’ . $ is increasing.

(ii)’. For level j of component i , there exists a vector such that

$(J~~ ~
) • j while $ (&~ , 

~
) � j  for ~ ~ j ,  i — 1, . . .,  n and j  — 0, 1, . . .,  M.

(iii)’ . $Q) — J for j — 0, 1, ... ,  N .

Note that conditions (i)’ and (ii)’ generalize conditions (i) and (ii) in

the binary case . Condition (iii)’ is automatically satisfied in the binary case,

but is not implied in the present multistate case by (i)’ and (ii) ’.

Some examples ~f MCS’s are:

A series system: $(~) - mm x~.
1 �i�n

A parallel system: $(~) - max x1.l�i�n

A k-out-of-n structure : + (!) — X(n k+1)~ 
where X (1) ~ ... �

is an increasing rearrangement of x1, ~ • • ~~ 
x~.

Let P1, . . .,  P1, be nonempty subsets of C • (1, ...~~ n) such

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ain x~. Then $(&is a
i—l l�j~r ieP
~~ ~

‘1’ “~~~‘ ~r are called its mm path sets.

R r k  3.1. The structures in Examples 3.1, 3.2, and 3.3 are natural gener-

alizations of familiar basic structures in the binary case. They constitute

special cases of the structure in Example 3.4, which in the binary case defines

th. most general binary coherent structure ([1] • Chap. 1). The structure function

of Example 3.4 is due to Barlow (2]. Since the structure functions of Example 3.4

satisfy conditions (i)’, (ii)’, and (iii)’ of D finition 3.1, they constitute a

~~~~~~1,y 
__________ 

~~ ••~1
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subclass of our MCS class. By.~ 3r~aiJ~ing some special cases it is easy tO see

that the class in Example 3.4 is actually a small subclass of our MCS . For

instance , for a two component system , Example 3.4 yields only two systems : the,

parallel system and the series system. However for S - (0, 1, 2) there are

more than lflfCS ’s.

In the remainder of this section we investigate the structural properties

of the IICS. We ext end results obtained in the binary case ((1], Chap . 1) to

the more general multistate case.

The following lemma gives a decomposition identity useful in carrying out

inductive proofs . It holds for any multistate structure , not j ust for the PICS.

Lemma 3.1. The following identity holds for any n-component structure

function $.

M
(3.1) — .z ~~~ 3) ‘(x. rj] for i — 1, ... , n,

3—0 1

where
I if x. — j

1
[x.sj]

1 0 if x1 �j.

The proof is obvious and therefore omitted.

The following theorem gives simple bounds on MCS performance.

Theorem 3.1. Let $ be the structure function of an PICS of n components.

Then

(3.2) mm X
i 

� •(3) ~ max x~ .
l�i~n l�i�n
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Proof. Let in max x.. Then +(3) � •(m) by the monotonicity of •. By
1�i�n 1

condition (iii) ’ of Def. 3.1, $(~) - in. The upper bound follows .

The proof establishing the lower bound is similar. 
~I

Theorem 3.1 states that a parallel system yields the best performance of

an tICS, and a series system yields the worst performance. Using this theorem,

.~e will show similar probabilistic bounds in Section 4.

As in the binary case, we Play define a dual structure for each multistate

structure.

Definition 3.2. Let $ be the structure function of a multistate system.

The dual structure function is given by:

(3.3) ,D(x) = N - $(M - x1, ... , M - xe).

It is easy to verify t!’~t the dual of an MCS is an MCS.

Example 3.5. The dual of a series (parallel) system is a parallel (series)

system. More generally , the dual of a k-out-of-n system is an (n - k + 1)-out-of-n

system .

Design engineers have used the well known principle that redundancy at the

component level is p~3ferable to redundancy at the system level (al l other

things being equal). We present this principle in mathematical form along with

a proof for MCS’s.

Theorem 3.2. Let $ be the structure function of an tICS. Then

(i). ,(~ v � $(~
) v

(ii). $(3 A r )  � •(3) A •(r).
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Equality holds in (i) for all x and r if and only if the structure is parallel.
Equality holds in (ii) for all x and ~ if and only if the structure is series .

Proof. (i). X
i 

V y1 � x~, i — 1, . . .,  n. Thus $(x v ~) � +(3) since $
is increasing . Simi larly, $(x V � $(r) . It follows that $(x V

max [$ (x) , • (x) I $ (x) V $ (r).
(ii). A similar argument proves (ii).

If the structure is parallel (series), then equality in Ci) ((ii)) is

readily established.

Next assume •(x V 
~
) = •(3) V $(r) for all x and ~~~. For each i, j, there

exists C. ., x) such that $(j 1, 3) — j and $(x1, x) c J when x1 < j, i = 1, ... , n

and j  — 0, 1, ..., N (by (ii) ’ of Def.  3.1). Since (j~~, 3) — (j~ , 0) V 
~~~ 

x ) ,

we have J — $( j . ,  2) = $(J ., 2) v •(O~, x). It follows that $(j1, 0) — j for

i — 1, . . .,  n and j — 0, 1, ... , ti. Now $ (3) = $(x1, 0, ... , 0) V $(0, X2, 0, ..., 0)

V . . .V  $(0, 0, ..., Xn) x1 
V x2 V . . .V  Xn E max x1. Therefore • is a parallell�i�n

structure.

Finally, to prove necessity for equality in (ii), assume $(x A — •(x) A

for all x and 
~ 

Let $D be the dual tICS of •. It is easy to show that •‘~(~ V 
~
) -

V ,D (~) for all x and ~~~. Hence by (i) $
D is a parallel structure. Therefore

• is a series structure. ~
In binary coherent structure theory, the concepts of minimal path vectors

and minimal cut vectors play a crucial role. The analogue in tICS theory is the

concept of critical connection vectors. Using this concept we can represent the

state of a tICS in terms of its critical connection vectors.

Definition 3.3. A vector x is said to be a connection vector to level J if

— j, j • 0, 1, ... , P4.

- - - 
.
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~-~ - - - - -
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Definition 3.4. A vector x is said to be an uppá!1 critical connection

vector to level j  ‘if $ (3) — j  and ~ c x-implies +(~) <L j  • 1, ... , M.

Similarly, we can define a lower connection vector to level j, j - 0 , 1,

P4-i.

The existence of such critical connection vectors is guaranteed by the

conditions of Definition 3.1.

Let x be an upper critical connection vector to level j. Define C~ (3) —

{i: xi � j}. Obviously C~(3) is a non-empty subset of C = (I , ... , n}. For

j = 1, ... , H, let C
3 

= (C
3
(x): xi s an upper critical connection vector to

level j}. Then the following lemma shows that C
3 

enjoys a property similar to

that enjoyed by the mininril path sets and the minimal cut sets in the binary case.

Lemma 3.2. For 3 = 1, ..., H,

Ci). UC. — (1, 2, ..., n}.

(ii). If A and B are two different members of C3, then A 4 
B.

The proof follows readily from Def. 2.1 and hen’~ is omitted.

For 3 = 1, .. ., N, let 4, .. ., 
~~ 

be the upper critical connection vectors

to level j, where = (Yj ~,, ~~~ ~~~~ 
The following theorem, stated without

proof , enables us to determi:~3 the state of an tICS using its upper critical

connection vectors.

Theorem 3.3. Let $ be the structure function of an tICS. Let 4, ... ,

be its upper critical connection vectors to level 3, 3 — 1, ... , P4. Then

(3.4) $(3) � 3

if and only if x � 4 for some L , 1 5 £ S n3.
Theorem 3.3 is used in Section 4 to establish bounds on the system performance

function.

S 
_ 

__  .-- -~~~~~~~~~~ _— .- _______
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4. Stochastic Performance of Multistate Coherent Systems.

In Section 3 we discussed deterministic aspects of tICS’s. In this section,

we determine the relationship between the stochastic performance of the

system and the stochastic performances of its components. We also obtain bounds

on system performance which are particularly useful when exact system performance

is difficult to evaluate.

Let X~ denote the random state of component i, with

P[X i - 3] -
(4.1)

P(X~ ~

3 — 0, 1, ... , 14 and i — 1, ...,n. P~ represents the performance distribution

of component i. Clearly,

P
~
(j ) —

L M

Pi04) 
I

k’.O

for i — 1, ... , n.

Let X - (X1, ... , X~) be the random vector representing the states of

components 1, ... , n , where the X1, ~~~~~~~ 
Xn are assumed to t~e statistically

mutually independent. Then $(~
) is the random variable representing the system

state of the tICS having structure function 4, with

P(+(~) — j J • p3. 3 • 0, 1, ..., K,
(4.2)

s 3) • P(J) . 3 • 0, 1, ... , N.

- ~~~~~~~~~~
‘--. - -

~ 

- .‘. t,
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P represents the performance distribution of the system. Let h • E

~ze may express h as follows :

h h~ (P1, . . .,  Ps),

since h is a function of the P1, . . .,  P~ . We may also express h alternatively:

h h ( ~1, E’-. ‘“‘

where p1 ~~~~ 
nil’ . . .,  p~~) for i — 1, ..., n. In either case we call h the

performance function of the system. We shall omit the subscript on h when no confusion
will result.

The following identity expresses a system performance function of n components

in terms of system performance functions of n - 1 components.

Lemma 4.1. The following identity holds for h:

(4.3) h(~1, ~2’ 
• • • ~~ 

- Pjj ho 1; 24’ •..~~ ~~~~~ 
i • 1, ... ,

where h(J~ ; p~, ~2’ 
.. .,  p~) • E +(J~ ~

) E •(X1, . . .,  ~~~~ 3, X3 ,~ , . . .,  Xe).

Proof. By Lemma 3.1 and the mutual independence of the components, we have:

E ) 

j~0 ~ 1[X~.j] 
2 •(J~ , ~~

).

Relation (43) follows i ediately. fl
The following theorem shows that h is strict ly increasing in each 

~ij 
for 3 ~ 0.

Theorem 4.1. Let h(24, .. .,  p,~
) be the performance function of an tICS. Let

- - 
0 c p13 1 for i • 1, . . . ,  n and 3 • 0, 1, ..., H. Then h(p~, ..., p~) is strictly
increasing in P13. i • i, ... . n and 3 • 1, .... 14.

~~~~~~~~~~~~~ 
— — 

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
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Proof. From (4.3) and the fact that 
~ 

— 1, and i • 1, ..., n , we have
3*0

h(p~, ... , p~) • .1 
p~3 ~~~~~~ ~

) - •
~
°1’ ~~)~~

•

j=1

Thus -

~~~~-—— 2(4(31, ~ 
— $(O~, ~)I, i = 1, ..., n and 3 — 1, ... , 14.

L jj

Since • is increasing, E[$(j1, ~
) - 

~~~~ ~)J � 0. In addition, •(3~~ x
0
) -

~~O1,x°) > 0 for some (.
~~, ~.

°) since the structure is an tICS. Since 0 < p
13 

c 1

for all i and 3, we have E($(j~ , X) - +(O~, ~
)] > 0. Thus the desired result

follows. f~

Next we obtain properties of h as a function of the P1, ... , P~. First we

show that h(P1, ... , P~) is monotone increasing with respect to stochastic ordering.

A similar result is proved by Barlow (2] for his subclass of MCS’s (see Ex. 3.4).

Our proof of the more general result is simpler.

Theorem 4.2.  Let P~, P~ be two possible performance distributions for com-

ponent i , i — I , ... , n. Assume P1(j) � for 3 = 0, 1, ..., N and i • 1, ... , n.

Let P (P ’) be the corresponding system performance distribution . Then

(1). P(3) � P ’(j )  for 3 — 0, 1, ..., U,

(ii). h(P1, ... , P~) S h(P~, ... , Ph) .

Proof. Let X 1, ... , X~(X~, ... , X~) be mutually independent random

variables having distribution functions P
1 ... , P~(P~, ... , P~) respectively.

Then for 1 • 1, ... , n P~(j) P~(J) for 3 • 0, 1, ..., M implies that < X~.
• 

- 
Since 4 is increasing, •C~) ~ •(X’). The desired results in (i) and (ii)
follow immediately. I I

- - - -

_____________ • — s -- —
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Similarly, we reir te properties of P, the system performance distribution,

to properties of h , the system performance function , or to pr~operties of the ’

pi~
. As examples we state the following two straightforward results.

Lemma 4.2. Let h be the performance function and P be the performance

distribution of an MCS. Then

P4-1
h = 

~ ~ ( j ) ,  where F(j) 1 - P(j ) .
3*0

Proof. Since •(~) is a nonnegative integer valued random variable, then

~~X) — ~ P(
~(~) 

> 3], yielding t1~’, desired result . fl
3—0

A decomposition identity is given in:

Theorem 4.3. Let 4 be the structure function of a tICS. Then

N
(~~.4) P [s(~) � ii — .1 Pjj P(4(J~. ~

) � U , £ • 1, •.., 14.
3—0

Proof. By the law of total probability, we have:

N
� £] — 

~ 
P[$(!) � • 3] P(X1 — 3].

Since the components are mutually independent, (4.4) follows immediately. II
Next we obtain bounds on both the system performance function and the

system performance distribution. Using Theorem 3.1, we establish:

Theorem 4.4. Let P be the performance distribution and h be the performance

function of an tICS. Let P~ be the 1th component performance distribution for

1 • 1, ..., n. Then for 3 — 0, 1, ..., H — 1:

n n
(1). U P~(3) ‘ P(3) s 1 — 11

i— i i— i

JI
~~ - 

_

~~~~~~~~~ 

- 

— -~~~
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•~ H A H
(i i). ~ TI V~(J-l) S h S 

~~ 
[1 — TI P

1(j-l)].3—1 i—i 3—i i— l

Proof. Ci) . By Theorem 3.1 we have m m  X . S $Q) S max X . Since
lSi�.n 1 l�iSn

., X~ are mutual ly independent , (i) follows immediately.
14

(ii). We use the fact that h - I P [+(~) ~ 3] and the bounds on
3—1

~
($(!) 

~~j]. II
Next we illustrate how we can use the upper critical connection vectors

to establish bounds on the system performance distribution P and consequently

on system performance function h. Let 4, ... , be the upper critical

connections to level j, 3 • 0, 1, ..., U. Let A~ denote the event that X �

r — 1, ... , n~. By Theorem 3.3, it follows that P($(~) � 3]  = Pj U A3].
r—l r

- - Let Sk = I P(A1 n A4 n • n A
1 1. By the inclusion-exclusion principle,

1 ‘2 k
lSi ci ‘c...’cj Sn.1 2

� ~ - (-1)~~~ Sk .
k-i

Thus
- .

P[$(~) � 3] 5 S1 • I P[A],
r- 1

P (t~(~) � S1 - S2,

and so on , constituting upper and lower bounds on P [4(~) � 3]  • ~ (3-l) for

3 — 1, ... , n. Since h • 
~ ~
[4(!) � 3] we automatically have upper and

3—1
lower bounds on h also. Note that P(A~) • P(X � )~~.] - P[X1 ~ v1~’ ~~~ ~4r’- - ’’fl - j  gC ~I~ -~ ’
Xn � y~

1 )  • U P[X1 � y~~) for 1 5 r S n
3 and 3 • 1, ..., N . • 

~% I ’  ~
•1 . ’! c_- i-

— 
- - - 

- - - — L
~~~~- ~— -~ ~~=— ~~

.- — —
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S. Dynamic Models for Multistate Coherent Systems.

In the last two sections , we have studied deterministic and probabilistic

properties of tICS’s at a fixed point in time. Now we consider dynamic models,

i.e., models in which the state of the system and of its components vary over

time. At time 0, the system and each of its components are in stato N

(perfect functioning) . As time passes, the performance of each component (and

consequently of the system itself) deteriorates to successively lower levels ,

until ultimately failure occurs (level 0 is attained).

In the binary case, the length of time during which a component or

system functions is called the ~~~~~~~~ of the component or system; these

lifelengths are nonnegative random variables. The corresponding lifelength

distributions have been classifl d according to various notions of aging. See,

e.g., [1]. Two of the important classes of life distributions are the increasing

failure rate average (1PM) c1~ss and the new better than used (NBU) class.

Closure of these classes under various basic reliability operations, such as

convolution of distributions sad f.i~~tion of binary coherent systems, are

— - investigated in [1]. Ia this siction we investigate generalizations of these

useful concepts in the multistate case.

Let (Xi (t) , t 0} denote the stochastic process representing component stat I

at time t as t varies over the nonnegativ. real numbers, for i l ,...,n. The stochastic

process (+(!(t)), t � 0} represents the corresponding system state as t varies

from 0 to ~, where X(t) • (X1(t) , 
~~~~~~~ 

X~(t)). We ass~~~ X1(O) • N , 1 — 1, ..., n.

We assume as before that components are mutually statistically independent; -:

thus the processes (X1(t), t � O}, i - 1, ..., n, are also mutually independent.

Following Ross (12), we present:

.IIii~ - ___I___ - -
- , - - - -•-y- 

____i__.~ 

___.1
________ - - —~
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I,
Definition 5.1. The stochastic process (X1(t), t � 0} is said to be an

IFM process if T~ inf{t: Xi(t) � J} is an IFM random variable for 3 - 0,

1, ... , 14 — 1.

In a similar fashion we may define an IFRA process for the system :

t ~ 0). Note that in the ~.inary case, T~ is simply the lifelength

of component i.

The following theorem is due to Ross [12] .

Theorem 5.1. The Generalized IFRA Closure Theorem. Let {X
i(t) ,  t � 0) ,

i - 1, ... , n , be independent 1PM processes and • an increasing structure

function . Then (~ (X( t)) t ~ 0) is an IFRA process.

We now give a definition for NBU stochastic processes different from the

one given by Ross [12]. We then derive a simple characterization for our NBU

stochastic processes. Using this characterization, we give a simple proof of

a generalized NBU closure theorem .

Definition 5.2. The stochastic process (X 1(t), t � 01 is an NBU stochastic

process if T~ is an NW random variable for 3 - 0, 1, ... , M - 1.

In a similar fashion we may define an NBU stochastic process (~ (X(t)) ,

t � 0) for the system.

The following lemma gives a simple characterization for an NBU process

(as well as for an NW random variable) . We omit the simple proof.

L .s 5.1. The stochastic process (X(t), t � 0) is NW if and only if

for all s � 0 and t � 0:

St
X (s • t) c min (X’(s), X ’(t)) ,

I
-- - ---~~ - L - -~~~~~~~~ H
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where X ’(s) and X ’( t )  are two independent random variables having the same

distributions as X(s) and X(t) respectively.

We may now prove the main result of this section.

Theorem 5.2. Let • be the structure function of an MCS having n components.
Let (X 1(t), t � 0), i — 1, ... , n , be independent NW stochastic processes.

Then (~ (X(t)) , t � 0) is an NW stochastic process.

Proof. For arbitrary fixed s � 0 and t � 0, let X~(s). ..., X~(s), X~(t) .

X~(t) be mutually independent random variables having the same distribu-

tions as X1(s), ... , X~(s), X1(t), ..., X~(t) respectively. Since {X~(t). t � 01

is an NW process, we have by Lemma 5.1:

St
X1(s + t) < min(X~(s), X~(t)), i — 1, ..., n.

Since • is increasing, it follows that
st

• t)) c $(min(X’(s), X’(t)).

St
By Theorem 3.2, •(min(X’(s), X’(t))) c ain(~Q’(s)), •(X’(t))). Thus $(X(s + t))

min(~ (X’( s)), •(X ’(t))).  Using Lemma 5.1 again, the desired result follows. II

Remark 5.1. The useful characterization of Lemma 5.1 makes our proof of

the generalized NW closure theorem in the binary case simpler than the proof

given in [1).

•-~
- —

if -
’’

~~~~~~~~ ~~~~ 
•- - - 

- -- ~~-~~~~~ - - - ~~~



19

REFERENCES

[1] Barlow , R. B. and Proschan , F. (1975) . Statistical Theory of Reliability
and Life Testing. Holt, Rinehart and Winston, New York .

(2) Barlow, R. B. (1977). Coherent systems with sulti-state components.
ORC 77-5, Operations Research Center , University of California ,Berkeley.

[3] Birnbaua, Z. W .,  Esary, J. D. and Saunders, S. C. (1961). Multicomponent
systems and structures and their reliabilities. Technometrics, 3,55-77.

[4) Birnbaua, 2. W. and Esary, J. D. (1965). Some inequalities for reliabilityfunctions . Proc. of the Fifth Berkeley Symposium on Math. Statisticsand Probability, 271-283.

[5] Birnbsum, 2. W. (1960). On the probabilistic theory of complex structures.
Proc. of the Fourth Berkeley Sumposium on Math. Statistics andProbability, 49-55 .

[6] Birnbaum, Z. W.,  Esary , J. D. and Marshall, A. N. (1966) . Stochasticcharacterization of wearout for components and systems. Ann. Math.Statist. 37, 816-825 .

[7] Esary, J. D. and Proschan, F. (1963). Coherent structures of non-identical components. Technometrics, 5, 191-209.

[8) Hirsch, N. H. et al (1968). Cannibalization in aalticomponent systemsand the tI~ory of reliability. Naval Research Logistics Quarterly,
~~~~ 331-359.

(9] Hochberg, 14. (1973). Generalized multicomponent systems under cinnibal-
ization. Naval Research Logistics Quarterly, 20, 585-605.

[10) *irchland, J. D. (1975). Fundamental concepts and relations for relia-
bility analysis of multistate systems. Reliability and Fault Tree
Analysis , ad. by R. B . Barlow, J. Fusseul , and N. b. Singpurwalla.

[11) Postelnicu, V. (1970). Nondichotomic xwlticomponent structures.Bulletin de la Societ4 des Sciences t4ath~~atiques de la R. S.Ro~. sine, Tom. 14 (62), nv. 2, 209-217.

(12] Ross, S. (1977). t.bjlti-valued state component reliability systems .Technical Report, Department of Industrial Engineering and OperationsResear ch , University of Califo rnia , Berkeley .
(13) Simon, R. 14. (1970). Optimal cannibalization policies for multi-component

systems. SIAMJ. Ap~1. Math., 19, 700-711.

[14) Simon, R . N. (1972) . The rel iability of multicomponent systems subject
— to cannibalization. Naval Research Logistics Quarterly, 19, 1-14.



UNCLASSIFIED
5ECUMTr CLASSIFICATION OF ThIS PAGE

REPORT DOCUMENTATION PAGE - - -

1. REPORT NUMBER 2. GOVT ACCESSION NO. 
- 

3. RECIPIENT’S CATALOG NUMBER

FSU No. M434
AFOSR No. 76
USARO-D No. 27

4. TITLE (and subt tle) 5. TYPE OF REPORT ~ PERI OD COVERE D

Multistate Coherent Systems’ Technical Report
- 

6. PERFORMING ORG. REPORT NUMBER

FSIJ Statistics Report M434
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

B. El-Neweihi, F. Proschan, J. Sethuranian AFOSR-77-3322, APOSR-74-2581D,
DAA 29-76-G-0238

9. PERFORMING ORGANIZATION NAME ~ ADDRESS - 

10. PROGRAM ELEMENT, PROJECT, TASK AREA ~WORK UNIT NUMBERS
The Florida State University
Department of Statistics
Tallahassee , Florida 32306

11. CONTROLLIN G OFFICE NAME ~ ADDRESS 
- 

12. REPORT DATE

The U .S. Air Force October , 1977
Air Force Office of Scientific Research 13 NUMBER OF PAGES1400 Wilson Boulevard
Arlington , Virginia 22209 19

United States Army Research Office-Durham
P.O. Box 12211
Research Triangle Park , N.C. 27709

14. MONOTORING AGENCY NAME ~ ADDRESS (if 15. SECURITY CLASS (of this report)
different from Controlling Office)

Unclassified
l5a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this report) 
- ________________________________________

Approved for public release; distribution unlimited.

17. DISTR I BUTION STATBIENT (of the abstract entered in Block 20 , if different from report)

18. SUPPLEMENTARY NOTES

19. KEY~~~RDS

t4iltistate coherent systems, coherent systems, rel iabil ity, performance, 1PM, NBIJ , 
- 

ifredundancy 

- 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



UNC LASSIF lED
SECURITY CLASSIFICATION OF THIS PAGE
20. ABSTRACT

The vast majority of reliability analyses assume that components and system are in

either of two states: functioning or failed. The present paper develops basic theory

for the study of systems of components in which any of a finite number of states may

occur , representing at one extreme perfect functioning and at the other extreme complete

failure . We lay down axioms extending the standard notion of a coherent system to the

new notion of a imiltistate coherent system . For such systems we obtain deterministic and

probabilistic properties for system performance which are analogous to well known results

for coherent system reliability. 

- - --—— -~~~~~~~~~~~ —-


